但这并不能难住马正轩。
这三方面的知识,都是很基础的内容,马正轩没有不会的道理。
这种难度的题目,甚至不需要马正轩在草稿纸上演算,但为了稳妥起见,马正轩还是在草稿纸上算了一遍再腾到答题纸上。
a为幂零矩阵故有an0,记fx1xα,当j>k时,记……,用jordan标准型直接表示出gx,故此,使得积分∫gijxdx均存在的充分必要条件是a30
当时间还剩下一个半小时的时候,马正轩只剩下最后两道附加题。
附加题一设x1,x2……xn,都是独立同分布的随机变量,其有共同分布函数fx和密度函数fx,现对随机变量,x1……xn,按大小顺序重新排列,……
附加题二证明若f∈s,则在Δ:|z|≦1内,有|z|(1+|z|2≦|fz|≤|z|1x2
附加题一没有难度,倒是附加题二,让马正轩卡壳了许久。
思索了许久,回忆了许久,马正轩一直回忆到去年这个时候在冬令营培训备战io时,顾律给他讲过的一个小知识点。ebe偏差定理!”马正轩眼前一亮,回忆起顾律讲述过的有关‘koebe偏差定理’的内容。ebe偏差定理,也就是附加题二的题干,是用来描述单位圆盘上单叶函数的一个有界定理。
“当时老师是怎么证明这个定理的?”马正轩闭着眼睛,仔细回忆。
“denes 定理!”许久之后,马正轩缓缓吐出这个名词。
他记得,当初就是利用denes nebe偏差定理。
denes 定理,是大学复变函数课程中的一个定理,它的主要内容,是讲如果有一个函数的幂级数展开为fzz+a2z2+a3z3+……anzn,则|an|≦n且等号成立当且仅当函数z1z2或它的旋转。
而当时,在马正轩的记忆中,顾老师就是利用,利用denes 定理,推导出当|z|<1时,fz的范围。由于f00,……,得到|fz||∫fζdζ|≤|z|1z2,最后,得出koebe偏差定理。
当时在冬令营的时候,顾老师明确的讲过,这是超纲的内容,io会用到的可能性极小,让众人听听就可以。中用到,当时的马正轩还是在笔记上记了下来,偶尔会翻看几下。上没有用到,倒是在全国大学生数学竞赛的时候,用到了这部分的知识。
若非是马正轩时常温习笔记上的内容的话,一年时间的过去,这部分内容,马振轩肯定是记不得了。
既然知道了证明的过程,那剩下的就好办了。
十几分钟的时间,马正轩就完成了附加题二的作答。
至此,整套试卷马正轩全部做完,而距离交卷,还有半个多小时。
在考试规则中,是允许提前交卷的。
但马正轩没有这么做的习惯,在仔细反复检查了多遍后,一直等到考试结束铃声响起,马正轩才交卷。
剩下的事情,便是静待着成绩的出炉了。
大学生数学竞赛的阅卷速度很快,短则十天,多则半个月,就会公布排名和获奖情况。